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Abstract

We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared poten-
tial, a recent variant of the Gay–Berne potential. Moreover, efficient routines have been provided for rigid body MD sim-
ulations, resulting in 1.6 times speedup compared to the two-point finite difference approach. It has also been shown that
the time cost of a MD simulation will be almost equal to a similar MC simulation, making use of the provided routines.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In molecular simulations, the van der Waals interactions have a prominent and essential contribution to the
non-bonded interactions and are typically described using the Lennard–Jones(6–12) potential or its variants
[1,2]. An interaction potential of this type between two extended molecules is assumed to be a double summa-
tion over the respective atomic interaction sites:
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where M1 and M2 denote the interacting molecules and Ua(Æ) is the atomic interaction potential, e.g. the Len-
nard–Jones(6–12) potential. The required computation time for the exact evaluation of this double sum is qua-
dratic in the number of interacting sites. In practice, a large distant interaction cutoff accompanied by a proper
tapering is used to reduce the computation cost. More sophisticated and efficient approximate summation
methods such as Ewald summation and the Method of Lights [3] are also widely used.

As an alternative approach, Gay and Berne [4] proposed a more complicated single-site interaction poten-
tial (in contrast to a more sophisticated summation) for uniaxial rigid molecules which was generalized to
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dissimilar and biaxial molecules by Berardi et al. as well [5]. In response to the criticism of the unclear micro-
scopic interpretation of the Gay–Berne potential [6], we have recently used results from colloid science to
derive an interaction potential through a systematic approximation of the Hamaker integral [7] for mixtures
of ellipsoids of arbitrary size and shape, namely the RE-squared potential [8]. The parameter space of the RE-
squared potential is almost identical to that of Berardi, Fava and Zannoni [5], agrees significantly better with
the numerically evaluated continuum approximation of Eq. (1) and has no nonphysical large distant limit. It
has been verified that the new potential is superior to the biaxial Gay–Berne potential in representing the
atomistic interactions of small organic molecules as well [9]. Moreover, the potential of mean force is repre-
sentable with the same functional form of the RE-squared potential with negligible error [9].

In an anisotropic coarse-grained potential model, a molecule is treated and described like a rigid body, lead-
ing to a considerable speedup in computer simulations while preserving the fundamental features of atomisic
potentials. Neglecting the atomic details, each molecule is characterized by the position of its center (a vector
r) and its orientation (a unitary operator A or a unit quaternion q).

Due to the complexity of the functional form of such potentials, numerical finite differences are widely used
for the evaluation of forces and torques in rigid body molecular dynamics simulations. The numerical differ-
entiation methods are prone to round-off errors and are generally expensive in large scale simulations.

In this article, we will derive analytic expressions for the forces and torques between two molecules inter-
acting via the RE-squared potentials. A set of optimized routines will be suggested for an efficient implemen-
tation of the given expressions. Finally, a time comparison between the two-point finite difference and the
analytic derivatives will be presented.

2. The RE-squared potential

As mentioned earlier, the RE-squared potential [8] is a coarse-grained description of the attractive and
repulsive interactions between two biaxial molecules. Each molecule is treated like a biaxial ellipsoid and is
described by two characteristic diagonal tensors (in the principal basis of the molecule) S and E, representing
the principal radii of the molecule and the strength of the pole contact interactions, respectively. As mentioned
earlier, the orientation of a molecule is described by a center position vector r and a unitary operator A, revol-
ving the bases of lab frame to the principal frame of the molecule.

The attractive and repulsive contributions of the RE-squared potential between two molecules with a rel-
ative center displacement of r12 = r2 � r1 and respective orientation tensors A1 and A2 are, respectively:
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where A12 is the Hamaker constant (the energy scale), rc is the atomic interaction radius and rðiÞx , rðiÞy and rðiÞz

are the half-radii of ith ellipsoid (i = 1, 2). g12 and v12 are purely orientation dependant terms, describing the
anisotropy of the molecules and h12 is the least contact distance between the ellipsoids.

The structure tensor Si and the relative well-depth tensor Ei are diagonal in the principal basis of ith mol-
ecule and are defined as:
Si ¼ diag rðiÞx ; r
ðiÞ
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ðiÞ
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where EðiÞx , EðiÞy and EðiÞz are dimensionless energy scales inversely proportional to the well-depths of the respec-
tive orthogonal configurations of the interacting molecules. For large molecules with uniform constructions, it
has been shown [8] that the energy parameters are approximately representable in terms of the local contact
curvatures using the Derjaguin expansion [8,10]:
Ei ¼ rcdiag
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The term v12 quantifies the strength of interaction with respect to the local atomic interaction strength of the
molecules and is defined as:
v12ðA1;A2; r̂12Þ ¼ 2r̂T
12B�1

12 ðA1;A2Þr̂12; ð5Þ

where B12 is defined in terms of the orientation tensors Ai and relative well-depth tensors Ei:
B12ðA1;A1Þ ¼ AT
1 E1A1 þ AT

2 E2A2: ð6Þ

The term g12 describes the effect of contact curvatures of the molecules in the strength of the interaction and is
defined as:
g12ðA1;A2; r̂12Þ ¼
det½S1�=r2

1 þ det½S2�=r2
2

½det½H12�=ðr1 þ r2Þ�1=2
; ð7Þ
where ri is the projected radius of ith ellipsoid along r̂12:
riðAi; r̂12Þ ¼ ðr̂T
12AT

i S�2
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and the tensor H12 is defined as:
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No trivial solution is available for the least contact distance between two arbitrary ellipsoids (h12) [6]. The
Gay–Berne approximation [4,6] is usually employed for its low complexity and acceptable performance:
hGB
12 ¼ kr12k � r12; ð10Þ
where the anisotropic distance function r12 [5] is defined as:
r12 ¼
1

2
r̂T

12G�1
12 r̂12

� ��1
2
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and the symmetric overlap tensor G12 is:
G12 ¼ AT
1 S2

1A1 þ AT
2 S2

2A2: ð12Þ

We will also employ this approximation in our derivation and will omit the superscript GB for shorthand in
the rest of the article.
3. Analytic expressions for forces and torques

The algebraic structure of the attractive and repulsive contributions of the RE-squared potential are essen-
tially the same. Thus, both of the contributions are expressible with a proper template structure, defined as:
U RE-squared
a ¼ A12
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We will work through this template in the derivation. One reaches to the explicit form of each of the contri-
butions by giving appropriate values to the a-subscripted parameters according to Eqs. (2a) and (2b).

In an interaction between the molecules M1 and M2, the exerted force and torque on the molecule M2 is
most easily evaluated by applying proper virtual displacements and infinitesimal rotations to the interaction
potential. The exerted force and torque on M1 is trivially obtained using the Newton’s third law, afterwards.

We denote the first-order translational and rotational variation operators on the coordinates of M2 by dT

and dR, respectively. The translational variation operator is formally defined on a scalar function F as:
dT½F ðA1;A2; r12Þ; q̂; �� :¼ �
o

o�
F ðA1;A2; r12 þ �q̂Þj�¼0; ð14Þ
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where the unit vector q̂ points to the direction of translational variation and � is an (infinitesimal) scalar for
which the variations are valued. The proper definition of the rotational variation is more involved. The pro-
jection of the exerted torque on M2 along the unit vector n̂ is obtained by applying the infinitesimal orthog-
onal operator Iþ �n̂ � r to the operator revolving the molecule from the lab frame to its current frame, i.e. AT

2 .
The resulting orientation operator would be ððIþ �n̂ � rÞAT

2 Þ
T ¼ A2 � �A2n̂ � r, according to the anti-symmetry

of the principal rotation generators (r). The discussion suggests the definition:
dR½F ðA1;A2; r12Þ; n̂; �� :¼ � o

o�
F ðA1;A2 � �A2X; r12Þj�¼0; ð15Þ
where X ¼ n̂ � r is the rotation generator corresponding to the direction n̂. Acting exclusively on the coordi-
nates of the second molecule (M2), the operators may be used to define the exerted force and torque along q̂
and around n̂, respectively, as:
FM2;q̂ ¼ �
dTðU A þ URÞ

�
q̂; ð16aÞ
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�
n̂: ð16bÞ
Applying either of the operators to the template potential Ua, we get:
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We will complete the derivation by providing explicit expressions for the first-order variations appearing in
Eq. (17).

3.1. Derivation of the first-order variations

3.1.1. Rotational variation of g12

Applying dR operator to g12 (Eq. (7)) and dropping off the constant terms, we arrive at:
dRg12
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The rotational variation of r2 is:
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We have used the symmetry and the anti-symmetry properties of S�2 and X, respectively. The rotational var-
iation of dRH12 is required prior to dR detH12:
dRH12 ¼ �
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It can be easily verified that,
det½Cþ �K� ¼ det½C� þ �
XdimC
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det½CðiÞ� þ Oð�2Þ ð22Þ
for arbitrary C and K, where C(i) is defined as:
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An explicit expression for dR detH12 is feasible using Eqs. (21) and (22). Equating C and K to H12 and dRH12/�,
respectively, the first-order terms of Eq. (22) will evidently be equal to the variation we are looking for.
3.1.2. Rotational variation of v12

Using Eq. (5), it is straightforward to show that:
dRv12

v12

¼ r̂T
12dRðB�1

12 Þr̂12

r̂T
12B�1

12 r̂12

; ð24Þ
where:
dRB12 ¼ ��½ðA2XÞTE2A2 þ AT
2 E2A2X�: ð25Þ
Using the relation:
ðCþ �KÞ�1 ¼ ��C�1KC�1 þ Oð�2Þ ð26Þ

for infinitesimal �, together with Eqs. (24) and (25) we finally reach to:
dRv12 ¼ 2�r̂T
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where the symmetry of Ei, B12 and their inverses have been used.
3.1.3. Rotational variation of h12

We will use the Gay–Berne approximation for the least constant distance defined by Eq. (10). Accordingly,
the rotational variation of h12 is a result of the change in the anisotropic distance function r12:
dRh12 ¼ dRðr12 � r12Þ ¼ �dRr12; ð28Þ

where the rotationally constant term r12 drops out. The term dRr12 is easily expressed in terms of dRG�1
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Eq. (12) together with Eq. (26) result in:
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where the symmetry of S2, G12 and their inverses have been used. Thus, we finally reach to:
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3.1.4. Translational variation of g12

The displacement of the molecule M2 results in a change in the direction of the connecting vector r12. Up to
first order, this change is expressed as:
r̂
ð1Þ
12 ¼

r
ð0Þ
12 þ �q̂
krð0Þ12 þ �q̂k

¼ r̂
ð0Þ
12 þ

�

r12

ðq̂� ðq̂ � r̂12Þr̂12Þ þ Oð�2Þ: ð32Þ
Defining a new auxiliary vector results in a cleaner derivation:
u :¼ q̂� ðq̂ � r̂12Þr̂12
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Accordingly, dr̂12 is obviously � times u. Applying dT operator to g12, we reach to:
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We will follow the same steps as the rotational case. The translational variation of the projected diameter ri is:
dTri ¼ �
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It is also easy to verify that:
dTH12 ¼ �
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Finally, we may express dT det [H12] explicitly using Eq. (22) in terms of H12 and its translational variation, Eq.
(36).

3.1.5. Translational variation of v12

Applying dT to v12, we get:
dTv12

v12

¼ dTr̂T
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12 r̂12

r̂T
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The numerator simplifies to:
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12 uÞ ¼ 2�uTB�1
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We finally reach to:
dTv12 ¼ 4�uTB�1
12 r̂12: ð39Þ
We have used the symmetry and the translational invariance of B12.

3.1.6. Translational variation of h12

Both of the involving terms in the definition of h12 contribute to dTh12. The contribution of the center dis-
placement is:
dTr12 ¼ �̂r12 � q̂ ð40Þ

and the variation of the anisotropic distance function may be expressed as:
dTr12
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Expanding and simplifying the numerator, we reach to:
dTr12 ¼ �
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2
�r3

12uTG�1
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Adding up the above contributions, we finally get:
dTh12 ¼ �r̂12 � q̂þ
1

2
�r3

12uTG�1
12 r̂12: ð43Þ
4. An efficient implementation for rigid-body molecular dynamics simulations

Most of the required matrix and vectors products in the evaluation of the first derivatives using the given
expressions will be already available once one gets through the evaluation of the interaction energy before-
hand. Without a careful implementation, a minimal speedup is expected due to the considerable redundancy
of the algebra. Therefore, a proper integration between the variable spaces of all routines must be considered.
The three provided routines demonstrate a suggested implementation. The first routine evaluates the interac-
tion energy while the second and third routines calculate the torque and force. The latter routines depend on
portions of variable space of the first routine in order to skip the redundant matrix products. We have also
omitted the � factors appearing in the variations beforehand as they will finally factor out, according to
Eqs. (16a) and (16b). In practice, one call of the first routine accompanied by three calls of each of the second
and third routines are mandatory in order to evaluate the three components of the force and the torque vec-
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continuously evolved from side-by-side to cross configuration. The ellipsoids are identical, having half-radii [11:2:0.5] (in arbitrary units)
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web version of this article.)
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configurations with respect to the vertical center separation (r). The ellipsoids are identical, having half-radii [11:2:0.5] (in arbitrary units).
The y-axis ticks correspond to the vertical force (in arbitrary units). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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tors. We have compared the computation time of an efficient C-language implementation of the proposed rou-
tines [11] against a numerical two-point finite differentiation. A large scale comparison (Pentium-M 1.7Ghz,
GCC4) indicates that the an evaluation of the interaction energy and the force and torque vectors takes 38.6 ls
using the provided routines while the same calculation takes 62.2 ls with the finite difference approach, leading
to 1.6 times speedup. Figs. 1 and 2 have been drawn with the aid of the provided routines and show the typical
behavior of interaction force and torque between two prolate molecules.

5. The time cost of Monte-Carlo and molecular dynamics simulations

Monte-Carlo (MC) and Molecular Dynamics (MD) simulations are two main concerns in studying molec-
ular systems. MC simulations are usually faster and more effective in the studying of steady states while MD
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simulations play a more prominent role in the studying of transition states of certain systems. Furthermore,
there are certain cases where MC simulations are of little interest (specially where the dynamical behavior is
demanded).

A MC step is considered to be as revealing an a MD step once each molecule successfully move to a new
position in the phase space. In a system of N molecules, each having an average number of M neighbors, the
time consumption of a MC step roughly is:
T MC ¼ aNM � sE; ð44Þ
where a is the inverse of the acceptance ratio (usually, a . 2 with a proper conditioning) and sE is the average
required time of an energy evaluation. The corresponding time consumption of an MD step would be:
T MD ¼
NM

2
ðsE þ sF þ sTÞ; ð45Þ
where sF and sT are the average excessive time required for a single force and torque evaluation in all three
directions. Using the values obtained from a sample large-scale simulation (with an acceptance of 50%),
the ratio of the time expenses turn out to be:
T MD

T MC

¼ 38:6 ðlsÞ
2� 2� 8:9 ðlsÞ ’ 1:1 ð46Þ
using analytical first derivatives. The same ratio would be 1.7 using finite differences. Therefore, one will end
up with a MD simulation almost as fast as a MC simulation using the provided analytical derivatives.

Routine 1: Evaluation of Ua
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22: Evaluate Ua using Eq. (13)

Routine 2: Evaluation of dRUa

Require: Evaluated variable space of Routine (1)
1: K( �A2ðn̂ � rÞ
2: p( Kr̂12
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Routine 3: Evaluation of dTUa

Require: Evaluated variable space of Routine (1)
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11: dTdH � dTdH + detJ

12: end for
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r3
1

þ dS1dTr1

r3
1

	 

14: dTv12 � 4uTw
15: dTh12 ( cþ 1

2
r3

12uTs

16: Evaluate dTUa using Eq. (17)
6. Conclusion

We have derived analytical expressions for the forces and torques exerted on two molecules interacting via
the RE-squared potential. Moreover, efficient routines have been provided for molecular dynamics simula-
tions. A numerical investigation reveals that the provided routines are 1.6 times faster than a two-point finite
difference approach. The evaluation of energy derivatives is the most expensive element in a MD simulation.
Using the provided analytic derivatives, a MD simulation will run almost as fast as a similar MC simulation
(Eq. (46)). This speedup leads to the possibility of larger scale MD simulations of a wide range of materials
such as liquid crystals and certain organic molecules.
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